Applying Gradient Descent in Convolutional Neural Networks
نویسندگان
چکیده
منابع مشابه
SpeeDO: Parallelizing Stochastic Gradient Descent for Deep Convolutional Neural Network
Convolutional Neural Networks (CNNs) have achieved breakthrough results on many machine learning tasks. However, training CNNs is computationally intensive. When the size of training data is large and the depth of CNNs is high, as typically required for attaining high classification accuracy, training a model can take days and even weeks. In this work, we propose SpeeDO (for Open DEEP learning ...
متن کاملHandwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns
The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...
متن کاملGradient Descent for Spiking Neural Networks
Much of studies on neural computation are based on network models of static neurons that produce analog output, despite the fact that information processing in the brain is predominantly carried out by dynamic neurons that produce discrete pulses called spikes. Research in spike-based computation has been impeded by the lack of efficient supervised learning algorithm for spiking networks. Here,...
متن کاملConvolutional Phase Retrieval via Gradient Descent
We study the convolutional phase retrieval problem, which considers recovering an unknown signal x ∈ Cn frommmeasurements consisting of the magnitude of its cyclic convolution with a known kernel a ∈ Cm. This model is motivated by applications such as channel estimation, optics, and underwater acoustic communication, where the signal of interest is acted on by a given channel/filter, and phase ...
متن کاملPathNet: Evolution Channels Gradient Descent in Super Neural Networks
For artificial general intelligence (AGI) it would be efficient if multiple users trained the same giant neural network, permitting parameter reuse, without catastrophic forgetting. PathNet is a first step in this direction. It is a neural network algorithm that uses agents embedded in the neural network whose task is to discover which parts of the network to re-use for new tasks. Agents are pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2018
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1004/1/012027